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FEATURE SELECTION

� The goals:
� Select the “optimum” number l of features

� Select the “best” l features

� Large l has a three-fold disadvantage:
� High computational demands

� Low generalization performance

� Poor error estimates



� Given N

� l must be large enough to learn
� what makes classes different

� what makes patterns in the same class similar

� l must be small enough not to learn what makes 
patterns of the same class different

� In practice, l <N/3 has been reported 
to be a sensible choice for a number of cases

� Once l has been decided, choose the l most 
informative features

� Best:  Large between class distance, 
Small within class variance





� The basic philosophy

� Discard individual features with 
poor information content

� The remaining information rich 
features are examined jointly as 
vectors



Class Separability Measures
Considering features individually cannot take into account existing 
correlations among the features. That is, two features may be rich in 
information, but if they are highly correlated we need not consider both of 
them.  To this end, in order to search for possible correlations, we consider 
features jointly as elements of vectors. To this end:

� Discard poor in information features, by means of a statistical test.

� Choose the maximum number, l , of features to be used. This is 
dictated by the specific problem (e.g., the number, N, of available 
training patterns and the type of the classifier to be adopted).



� Combine remaining features to search for the “best”
combination. To this end:

� Use different feature combinations to form the feature 
vector. Train the classifier, and choose the combination 
resulting in the best classifier performance.

A major disadvantage of this approach is the high 
complexity. Also, local minima, may give misleading 
results.

� Adopt a class separability measure and choose the 
best feature combination against this cost.



Divergence
To see the rationale behind this cost, consider the two – class case. Obviously, if on 

the average the

value of                 is close to zero, then    should be a

poor feature combination. Define:

�

�

�

d12 is known as the divergence and can be used as a class separability measure.
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� For the multi-class case, define dij for every pair of classes 
ωi, ωj and the average divergence is defined as

� Some properties:

� Large values of d are indicative of good feature combination.
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Matriz de espalhamento (scatter

matrices) – Espalhamento intraclasse

� These are used as a measure of the way data are scattered in the respective 
feature space.

� Within-class scatter matrix

where

and

ni the number of training samples in ωi.

Trace {Sw} is a measure of the average variance of the features.
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Espalhamento inter-classe

Trace {Sb} is a measure of the average 
distance of the mean of each class from the 
respective global one.
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Espalhamento Misto

� Mixture scatter matrix

It turns out that:

Sm = Sw + Sb
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Medidas sobre matrizes de 

espalhamento

�

�

� Other criteria are also possible, by using various combinations of Sm, Sb, 
Sw.

The above J1, J2, J3 criteria  take high values for the cases where:

� Data are clustered together within each class.

� The means of the various classes are far.
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Razão discriminante de Fisher

� In one dimension and for two equiprobable classes the 
determinants become:

and

known as Fischer’s ratio.
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Ways to combine features
Trying to form all possible combinations of     features from an original set of m

selected features is a computationally hard task. Thus, a number of 
suboptimal searching techniques have been derived.

� Sequential forward selection. Let x1, x2, x3, x4 the available features 
(m=4). The procedure consists of the following steps:

� Adopt a class separability criterion (could also be the error rate of 
the respective classifier). Compute its value for ALL features 
considered jointly [x1, x2, x3, x4]

T.

� Eliminate one feature and for each of the possible resulting 
combinations, that is [x1, x2, x3]

T, [x1, x2, x4]
T, [x1, x3, x4]

T, [x2, 
x3, x4]

T, compute the class reparability criterion value C. Select 
the best combination, say [x1, x2, x3]

T.



� From the above selected feature vector eliminate one 
feature and for each of the resulting combinations,           
,            , compute C    and select the best 
combination.

The above selection procedure shows how one can start 
from   features and end up with the “best” ones. 
Obviously, the choice is suboptimal. The number of 
required calculations is:

In contrast,  a full search  requires:

operations.
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Sequential backward selection
� Here the reverse procedure is followed.

� Compute C for each feature. Select the “best” one, say x1

� For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3], [x1, x4]
compute C and choose the best, say [x1, x3].

� For all possible 3D combinations of [x1, x3], e.g., [x1, x3, x2], etc., 
compute C and choose the best one.

The above procedure is repeated till the “best” vector with 

features has been formed. This is also a suboptimal technique, requiring:

operations.
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Floating Search Methods
The above two procedures suffer from the nesting effect. Once 

a bad choice has been done, there is no way to reconsider 
it in the following steps.

In the floating search methods one is given the opportunity 
in reconsidering a previously discarded feature or to 
discard a feature that was previously chosen.

The method is still suboptimal, however it leads to 
improved performance, at the expense of complexity.



� Besides suboptimal techniques, some optimal 
searching techniques can also be used, provided that 
the optimizing cost has certain properties, e.g., 
monotonic.

� Instead of using a class separability measure (filter 
techniques) or using directly the classifier (wrapper 
techniques), one can modify the cost function of the 
classifier appropriately, so that to perform feature 
selection and classifier design in a single step 
(embedded) method.

� For the choice of the separability measure a multiplicity 
of costs have been proposed, including information 
theoretic costs.



Optimal Feature Generation
� In general, feature generation is a problem-dependent task. 

However, there are a few general directions common in a number of 
applications. We focus on three such alternatives.

� Optimized features based on Scatter matrices (Fisher’s linear 
discrimination). 

� The goal: Given an original set of m measurements

, compute , by the linear transformation

so that the J3 scattering matrix criterion involving Sw, Sb is 
maximized. AT is an matrix.
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� The basic steps in the proof:

� J3 = trace{Sw
-1 Sm}

� Syw = ATSxwA, Syb = ATSxbA,

� J3(A)=trace{(ATSxwA)-1 (ATSxbA)}

� Compute A so that J3(A) is maximum.

� The solution: 

� Let B be the matrix that diagonalizes
simultaneously matrices Syw, Syb , i.e:

BTSywB = I , BTSybB = D

where B is a ℓxℓ matrix and D a ℓxℓ diagonal
matrix.



� Let C=AB an mxℓ matrix. If A maximizes J3(A) then

� The above is an eigenvalue-eigenvector problem. For an M-class problem,           

is of rank M-1.

� If ℓ=M-1, choose C to consist of the M-1 eigenvectors, corresponding 

to the non-zero eigenvalues.

� The above guarantees maximum J3 value. In this case:

J3,x = J3,y.

� For a two-class problem, this results to the well known Fisher’s linear 

discriminant

� For Gaussian classes, this is the optimal Bayesian classifier, 

with a difference of a threshold value .
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� If ℓ<M-1, choose the ℓ eigenvectors corresponding to the ℓ largest 

eigenvectors.

� In this case, J3,y<J3,x, that is there is loss of information.

� Geometric interpretation. The vector   is the projection of     onto the 

subspace spanned by the eigenvectors of            .
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� loadiris

� data=iris(:,1:4);

� m1=mean(data(1:50,:));

� m2=mean(data(51:100,:));

� m3=mean(data(101:150,:));

� m=(m1+m2+m3)/3;

� sb=(m1-m)'*(m1-m)+(m2-m)'*(m2-m)+(m3-m)'*(m3-m);

� s1=zeros(4,4);

� s2=s1;

� s3=s1;

� for i=1:50

� s1=s1+(data(i,:)-m1)'*(data(i,:)-m1);

� end

� for i=51:100

� s2=s2+(data(i,:)-m2)'*(data(i,:)-m2);

� end

� for i=101:150

� s3=s3+(data(i,:)-m3)'*(data(i,:)-m3);

� end

� sw=s1+s2+s3;

� [v,d]=eig(inv(sw)*sb)

� w=[v(:,1), v(:,2)]

� k=w'*data';

� plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'b*',k(1,101:150),k(2,101:150),'kd');

� xlabel('eixo principal');

� ylabel('segundo eixo');



Resultado LDA - Iris



Resultado LDA - Iris
� v =

� 0.2049   -0.0090    0.3398   -0.6672

� 0.3871   -0.5890    0.1988    0.4427

� -0.5465    0.2543    0.2728    0.4688

� -0.7138   -0.7670   -0.8779   -0.3729

� d =

� 0.6454         0         0         0

� 0    0.0056         0         0

� 0         0    0.0000         0

� 0         0         0   -0.0000

� w =

� 0.2049   -0.0090 sepal length

� 0.3871   -0.5890 sepal width

� -0.5465    0.2543 petal length

� -0.7138   -0.7670 petal width

� 1º eixo     2º eixo



Principal Components Analysis
(The Karhunen – Loève transform):

� The goal: Given an original set of m measurements 

compute 

for an orthogonal A, so that the elements of    are 
optimally mutually uncorrelated.

That is 

� Sketch of the proof:
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� If A is chosen so that its columns     are the orthogonal 

eigenvectors of Rx, then

� where Λ is diagonal with elements the respective eigenvalues λi.

� Observe that this is a sufficient condition but not necessary. It 

imposes a specific orthogonal structure on A.

� Properties of the solution

� Mean Square Error approximation.

� Due to the orthogonality of A:
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� Define

� The Karhunen – Loève transform minimizes the 

square error:

� The error is:

� It can be also shown that this is the minimum mean 

square error compared to any other representation of x

by an ℓ-dimensional vector.
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� In other words,      is the projection of      into the 

subspace spanned by the principal ℓ eigenvectors. 

However, for Pattern Recognition this is not the 

always the best solution.

x̂ x



� Total variance: It is easily seen that

�

� Thus Karhunen – Loève transform makes the total 

variance maximum.

� Assuming     to be a zero mean multivariate Gaussian, 

then the K-L transform maximizes the entropy:

� of the resulting     process.
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PCA

� loadiris

� data=iris(:,1:4)-repmat(mean(iris(:,1:4)),size(iris,1),1)

� [v,d]=eig(data'*data)

� w=[v(:,4), v(:,3)]

� k=w'*data';

� plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'b*',k(1,
101:150),k(2,101:150),'kd');

� xlabel('eixo principal');

� ylabel('segundo eixo');



Resultado PCA – Iris



Resultados PCA – Iris
� v =

� -0.3173    0.5810    0.6565    0.3616

� 0.3241   -0.5964    0.7297   -0.0823

� 0.4797   -0.0725   -0.1758    0.8566

� -0.7511   -0.5491   -0.0747    0.3588

� d =

� 3.5288         0         0         0

� 0   11.7001         0         0

� 0         0   36.0943         0

� 0         0         0  629.5013

� w =

� 0.3616    0.6565 sepal length

� -0.0823    0.7297 sepal width

� 0.8566   -0.1758 petal length

� 0.3588   -0.0747 petal width

� 1º eixo       2º eixo                



Resultados PCA – Wine



Resultados PCA – Wine

� w =

� 0.0017   -0.0012

� -0.0007   -0.0022

� 0.0002   -0.0046

� -0.0047   -0.0265

� 0.0179   -0.9993

� 0.0010   -0.0009

� 0.0016    0.0001

� -0.0001    0.0014

� 0.0006   -0.0050

� 0.0023   -0.0151

� 0.0002    0.0008

� 0.0007    0.0035

� 0.9998    0.0178

� wine_fields =

� Origin

� Alcohol

� Malic acid

� Ash

� Alcalinity of ash

� Magnesium

� Total phenols

� Flavanoids

� Nonflavanoid phenols

� Proanthocyanins

� Color intensity

� Hue

� OD280/OD315 of diluted wines

� Proline



Resultados LDA – Wine



Resultados LDA – Wine
� w =

� -0.1241    0.2644

� 0.0631    0.0878

� -0.0848    0.7003

� 0.0511   -0.0458

� -0.0008   -0.0001

� 0.2144   -0.0193

� -0.5869   -0.1194

� -0.5506   -0.4592

� 0.0409   -0.0930

� 0.1282    0.0694

� -0.3127   -0.4357

� -0.4017    0.0334

� -0.0009    0.0009

� wine_fields =

� Origin

� Alcohol

� Malic acid

� Ash

� Alcalinity of ash

� Magnesium

� Total phenols

� Flavanoids

� Nonflavanoid phenols

� Proanthocyanins

� Color intensity

� Hue

� OD280/OD315 of diluted wines

� Proline



Subspace Classification
� Subspace Classification. Following the idea of projecting in a 

subspace, the subspace classification classifies an unknown     

to the class whose subspace is closer to      .

� The following steps are in order:

� For each class, estimate the autocorrelation matrix Ri, and 

compute the m largest eigenvalues. Form Ai, by using 

respective eigenvectors as columns.

� Classify      to the class ωi, for which the norm of the 

subspace projection is maximum

� According to Pythagoras theorem, this corresponds to 

the subspace to which     is closer.
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Independent Component Analysis 

(ICA)� In contrast to PCA, where the goal was to 
produce uncorrelated features, the goal in ICA is to 
produce statistically independent features. This is a much 
stronger requirement, involving higher to second order 
statistics. In this way, one may overcome the problems of 
PCA, as exposed before.
� The goal: Given      , compute 

� so that the components of    are statistically independent. In 
order  the problem to have a solution, the following assumptions
must be valid:
� Assume that     is indeed generated by a linear combination of 

independent components

x lℜ∈y

xWy =
y
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� Φ is known as the mixing matrix and W as the 

demixing matrix.

� Φ must be invertible or of full column rank.

� Identifiability condition: All independent 

components, y(i), must be non-Gaussian. Thus, in 

contrast to PCA that can always be performed, ICA 

is meaningful for non-Gaussian variables. 

� Under the above assumptions, y(i)’s can be 

uniquely estimated, within a scalar factor.





Measures of nongaussianity

� To use nongaussianity in ICA estimation, we must have a 
quantitative measure of nongaussianity of a random variable, say y. 
To simplify things, let us assume that y is centered (zero-mean) and
has variance equal to one. 

� Kurtosis

� The classical measure of nongaussianity is kurtosis or the
fourth-order cumulant. The kurtosis of y is classically defined by

kurt(y) = E {y 4}−3(E {y 2})2

� Negentropy

� A second very important measure of nongaussianity is given by
negentropy. Negentropy is based on the information-theoretic
quantity of (differential) entropy.

� Negentropy J is defined as follows

J (y) = H (ygauss)−H (y)



Eigenfaces

Let be a random vector with observations .

1.Compute the mean

2.Compute the the Covariance Matrix S

3.Compute the eigenvalues and eigenvectors of

4.Order the eigenvectors descending by their eigenvalue. The principal components

are the eigenvectors corresponding to the largest eigenvalues. 

The principal components of the observed vector are then given by:

where .



Eigenface recognition

� The Eigenfaces method then performs face 

recognition by:

� Projecting all training samples into the PCA 

subspace. 

� Projecting the query image into the PCA subspace. 

� Finding the nearest neighbor between the

projected training images and the projected query

image. 





Imagem das eigenfaces





Scree plot

� A plot, in descending order of magnitude, of the

eigenvalues of a correlation matrix. In the context

of factor analysis or principal components analysis

a scree plot helps the analyst visualize the relative

importance of the factors — a sharp drop in the

plot signals that subsequent factors are ignorable.



Scree plot



Mais técnicas de redução de 

dimensionalidade

� MDS (multidimensional scaling)

� Nonlinear mappings

� Projection pursuit

� Grand tours

� Kernel PCA

� Autoencoder / Sparse coding

� Máquinas de Boltzman Restritas



MDS

� http://www.analytictech.com/networks/mds.htm
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