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FEATURE SELECTION

The goals:

= Select the “optimum” number [ of features
= Select the “best” [ features

Large / has a three-fold disadvantage:
= High computational demands

= Low generalization performance

= Poor error estimates




m Given N

0o [ must be large enough to learn
= what makes classes different
= what makes patterns in the same class similar

o [ must be small enough not to learn what makes
patterns of the same class different

0O In practice, I <N/3 has been reported
to be a sensible choice for a number of cases

m Once [ has been decided, choose the [ most
iInformative features

0 Best:  Large between class distance,
Small within class variance
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The basic philosophy

Discard individual features with
information content

The remaining information rich
features are examined as
vectors



Class Separability Measures

Considering features individually cannot take into account existing
correlations among the features. That is, two features may be rich in
information, but if they are highly correlated we need not consider both of
them. To this end, in order to search for possible correlations, we consider
features jointly as elements of vectors. To this end:

= Discard poor in information features, by means of a statistical test.

m  Choose the maximum number, [ , of features to be used. This is
dictated by the specific problem (e.g., the number, N, of available
training patterns and the type of the classifier to be adopted).



Combine remaining features to search for the “best’
. To this end:

o Use different feature combinations to form the feature
vector. Train the classifier, and choose the combination
resulting in the best classifier performance.

A major of this approach is the high
complexity. Also, local minima, give misleading
results.

o Adopt a class separability measure and choose the
best feature combination against this cost.



Divergence

To see the rationale behind this cost, consider the two — class case. Obviously, if on
the average the

value of In pxla)

is close to zero, then should be a

pixlw,)
poor feature+g9mbination. Define: |
X1 @
« Dy, = IP(EIC‘%)IH E: l)dﬁ
C pixlw,)

N p(x| @)
. D, = x|l @) 1n dx
21 __[op(_ 2) p(§|(01) X

d12 =D, + D,

d,, is known as the divergence and can be used as a class separability measure.



For the multi-class case, define d;; for every pair of classes
@, @ and the average divergence’is defined as

d= i i P(w)P(w;)d,

i=1 j=I
Some properties:

dijZO
dij =0,ifi=
dij:dji

Large values of d are indicative of good feature combination.



Matrlz de espalhamento (scatter
matrices) — Espalhamento intraclasse

= These are used as a measure of the way data are scattered in the respective
feature space.

o Within-class scatter matrix Z P S
where S E[(, ,U Xﬁ ,U )’]
and _ 1
P=P@)="

n; the number of training samples in @.

Trace {S,} is a measure of the average variance of the features.



Trace {S,} is a measure of the average
distance of the mean of each class from the
respective global one.



Espalhamento Misto

Vixture scatter matrix

S, = Elle—p Ja-p, ']

It turns out that:
S, =9, +9,




Medldas sobre matrlzes de

espalhamento
J = Trace{Sm} J, = S_m _ SW—I S
Trace{Sw} S,

J, = Trace{S s m}

o Other criteria are also possible, by using various combinations of S, S,,
S

The above J,, J,, J, criteria take high values for the cases where:

o Data are clustered together within each class.
o The means of the various classes are far.
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Razao discriminante de Fisher

0 In one dimension and for two equiprobable classes the
determinants become:

SW\ < 0 +0,

S| o< (e, = 1, )’

and ,
o] _ (1, — 1,
S.| o+o;

known as Fischer’s ratio.



Ways to combine features

Trying to form all possible combinations of  features from an original set of m
selected features is a computationally hard task. Thus, a number of
suboptimal searching techniques have been derived.

= Sequential forward selection. Let x,, x,, x5, x, the available features
(m=4). The procedure consists of the lelowmg steps:

o Adopt a class separability criterion (could also be the error rate of
the respective classifier). Comg}ute its value for ALL features
considered jointly [x,, x,, x5, x,]".

o Eliminate one feature and for each of the possible resulting
combinations, that is [x,, x,, x;51", [x;, x5 x,1% [x), x5 x,17, [x,,
x5, X417, compute the class reparabﬂlty criterion value C. Select
the best combination, say [x;, x,, x5]1.



o From the above selected feature vector eliminate one
feature and for each of the resulting combinations, [, 1T
[x., x,17x,, x,]'compute C  and select the best " *
combination.

The above selection procedure shows how one can start
from features and end up with the “best” ones.
Obviously, the choice is suboptimal. The number of
required calculations is:

1+%((m+1)m—€(€+1))

In contrast, a full search requires:

m) m!
0 0m=10)!

operations.



Sequential backward selection

= Here the reverse procedure is followed.
o Compute C for each feature. Select the “best” one, say x;,

o For all possible 2D combinations of x,, i.e., [x;, x,1, [x;, x;1, [x;, x,]
compute C and choose the best, say [x,, x;].

o For all possible 3D combinations of [x,, x;], e.q., [x,, x; x,], etc.,
compute C and choose the best one.

The above procedure is repeated till the “best” vector with
features has been formed. This is also a suboptimal technique, requiring:

operations. O — t(£=1)
2




Floating Search Methods

The above two procedures suffer from the nesting effect. Once
a bad choice has been done, there is no way to reconsider
it in the following steps.

In the floating search methods one is given the opportunity
in reconsidering a previously discarded feature or to
discard a feature that was previously chosen.

The method is still suboptimal, however it leads to
improved performance, at the expense of complexity.



O Besides suboptimal techniques, some optimal
searching techniques can also be used, provided that
the optimizing cost has certain properties, e.g.,
monotonic.

Instead of using a class separability measure (

) or using directly the classifier (

), one can the cost function of the
classifier appropriately, so that to perform feature
selection and classifier design in a single step
( ) method.

For the choice of the separability measure a multiplicity
of costs have been proposed, including
costs.



Optimal Feature Generation

O In general, feature generation is a problem-dependent task.
However, there are a few general directions common in a number of

applications. We focus on three such alternatives.

m Optimized features based on Scatter matrices (Fisher's linear
discrimination).
o The goal: Given an original set of m measurements
xe R, computeze R, by the linear transformation

XzATx

so that the {3 scattering matrix criterion involving S,, S, is
maximized. A” is an /xm matrix.



o0 The basic steps in the proof:
o Jy=trace{S, 'S, }
w S, =ATS A S, =ATS A,
m Ji(A)=trace{(ATS_A)! (ATS_A)}
= Compute A so that J,(A) is maximum.

o The solution:

m Llet B Dbe the matrix that diagonalizes

simultaneously matrices S, S, , 1.€:

B'S B=1I,B'S,B=D
where B is a £x£ matrix and D a #xf diagonal
matrix.



. T T e W S e T Y ey A,
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m  Let C=AB an mx{ matrix. If A maximizes J3(A) then

(S ;vle xb )C =CD

m  The above is an eigenvalue-eigenvector problem. For an M-class problem,

S‘IS ) is of rank M-1.
XWX
If #=M-1, choose C to consist of the M-1 eigenvectors, corresponding
to the non-zero eigenvalues.

The above guarantees maximum J3 value. In this case:
J3,x=J3,y.

For a two-class problem, this results to the well known Fisher’s linear

discriminant
T
y=C Xx

For Gaussian classes, this is the optimal Bayesian classifier,
with a difference of a threshold value .

v=lu - )5



If #<M-1, choose the £ eigenvectors corresponding to the £ largest
eigenvectors.

In this case, J3,y<J3,x, that is there is loss of information.

m  Geometric interpretation. The vector —7s the projection of X onto the
subspace spanned by the eigenvectors of



loadiris

data=iris(:,1:4);
m1=mean(data(1:50,:));
m2=mean(data(51:100,:));
m3=mean(data(101:150,:));

Oo0Oo0o0o0oao.iy

O

m=(m1+m2+m3)/3;

O

sb=(m1-m)"*(m1-m)+(m2-m)"(m2-m)+(m3-m)"*(m3-m);

s1=zeros(4,4);

s2=s1;

s3=s1;

fori=1:50
s1=s1+(data(i,:)-m1)*(data(i,:)-m1);

end

fori=51:100
s2=s2+(data(i,:)-m2)™(data(i,:)-m2);

end

fori=101:150
s3=s3+(data(i,:)-m3)™(data(i,:)-m3);

end

OO0OOoOoOo0oooOooOoooaQ

O

Sw=s1+s2+s3:

[v,d]=eig(inv(sw)*sb)

w=[v(:,1), v(;,2)]

k=w'"data";

plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'0* k(1,101:150),k(2,101:150),'kd");
xlabel('eixo principal');

vlabel('seatindo eixn"):

Jooooao



Resultado LDA - Iris
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Resultado LDA - Iris

O

O Oooao O Oonoao

Oo0oo0ooao

0.2049
0.3871
-0.5465
-0.7138

0.6454

-0.0090
-0.5890 0.1988
0.2543 0.2728
-0.7670 -0.8779

0.3398 -0.6672
0.4427
0.4688

-0.3729

0 0

0 0.0056 0

0
0

W=

0.2049

0.3871
-0.5465
-0.7138
1° eixo

0
0
0 0.0000 0
0 0 -0.0000

-0.0090 sepal length
-0.5890 sepal width
0.2543 petal length
-0.7670 petal width
2° eixo



Principal Components Analysis

(The Karhunen — Loéve transform):
> The goal: Given an original set of m measurements xe R”
compute ye R’

X:ATx

for an orthogonal A, so that the elements of Y are
optimally mutually uncorrelated.

That is
Ely@)y()H]=0, i# j

>  Sketch of the proof:
R, = E[XXT] = E[ATicicTA]= ATRxA



eigenvectors of Rx, then

R,=A"RA=A

where A is diagonal with elements the respective eigenvalues Ai.

Observe that this is a sufficient condition but not necessary. It
imposes a specific orthogonal structure on A.

Properties of the solution

Mean Square Error approximation.
Due to the orthogonality of A:

X = i y(a,;, y(i)=a, x

i=0



The Karhunen — Loéve transform minimizes the

5]

Elx-3 |-

square error: -

Zm: y(i)a,

The error Is:

els-3f 22

= |t can be also shown that this is the minimum mean
square error compared to any other representation of x
by an £-dimensional vector.



Vgt = e B
o T BT By
o P .

In other words, x is the projection of X into the
subspace spanned by the principal £ eigenvectors.
However, for Pattern Recognition this is not the
always the best solution.

\'x = *~ e
“‘HHH_ s 0L I'I".I::/ff
N/ o
N .



o TotaI variance: It IS easny seen that

o> =E|y’(i)|=1

y(i)

N Thus Karhunen — Loeve transform makes the total
variance maximum.

= Assuming Y to be a zero mean multivariate Gaussian,
then the K-L transform maximizes the entropy:

H, =-E [1n P, (X)]

= of the resulting y process.



PCA

O O O 0O 0O O

O O

loadiris
data=iris(:,1:4)-repmat(mean(iris(:,1:4)),size(iris,1),1)
[v,d]=eig(data™data)

w=[v(:,4), v(:,3)]

k=w'*data";
plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'b*™ k(1,
101:1350),k(2,101:150),'kd");

xlabel('eixo principal’);

ylabel('segundo eixo’);



Resultado PCA = Iris
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Re§ultados PCA -Iris

-0.3173
0.3241
0.4797

-0.7511

O OoOooano O I |

O0OoOon0oao

3.5288

0.5810
-0.5964
-0.0725
-0.5491

0

0 11.7001

0
0

W=

0.3616

-0.0823

0.8566

0.3588
1° eixo

0 36.0943

0

0.6565
0.7297
-0.1758
-0.0747
2° eixo

0.6565 0.3616
0.7297 -0.0823
-0.1758 0.8566
-0.0747 0.3588

0 0
0 0
0

0 629.5013

sepal length
sepal width
petal length
petal width



PCA - wine

30
_:.'é
20 A —
o x
9'; < "Zk* {}(}ﬁe * . e & & C%
10| oo kX *O O |
*%*gk_ & #o & o o Cg% > I &
3 # (o < 4O O o OO
I - O * < o O 08
* * ok * * o0
ol * & & o o % O o .
< * o0 o
* a%gk o O o o0 R
o & O
2 10+ #* 4} <& * o (9 _
© * o &'
=S O
=] * & (o] [
g ok b ]
220 c @ -
o O
» i o O @]
* o
o O
30 _
* * s
40 - -
50 " _
-60 : 4 :
-500 0 500

eixo principal

1000



T T T R TR R R T T - SR e,
W ol WEE  TE et A Ty ._!_'_.-__; e i

i e B o .-.. . r -

% i ory

P *:

Resultados PCA - Wine

O Ww= O wine fields =
o Origin

O 0.0017 -0.0012 0O A|COhO|

O -0.0007 -0.0022 0 Malic acid

O 0.0002 -0.0046 o Ash

O -0.0047 -0.0265 .

O 0.0179 -0.9993 O  Alcalinity of ash

o 0.0010 -0.0009 0 Magnesium

O 0.0016 0.0001 O Total phenols

O -0.0001 0.0014 O  Flavanoids

O 0.0006 -0.0050 0  Nonflavanoid phenols

O 0.0023 -0.0151 0  Proanthocyanins

o 0.0002 0.0008 o Color intensity

O 0.0007 0.0035 o Hue

o 0998 00178 0 0D280/0D315 of diluted wines
O  Proline



Resultados LDA - Wine

LDA - wine
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Resultados LDA - Wine

O

O
O
O
O
O
O
O
O
O
O
O
O
O

W=

-0.1241
0.0631
-0.0848
0.0511
-0.0008
0.2144
-0.5869
-0.5506
0.0409
0.1282
-0.3127
-0.4017
-0.0009

0.2644
0.0878
0.7003
-0.0458
-0.0001
-0.0193
-0.1194
-0.4592
-0.0930
0.0694
-0.4357
0.0334
0.0009

O

O 000000000000 ao

wine_fields =

Origin

Alcohol

Malic acid

Ash

Alcalinity of ash
Magnesium

Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
Color intensity

Hue

0D280/0D315 of diluted wines
Proline



Subspace Classmcatlon

Subspace Classification. Following the idea of projecting in a
subspace, the subspace classification classifies an unknown x
to the class whose subspace is closerto x .

= The following steps are in order:

o Foreach class, estimate the autocorrelation matrix Ri, and
compute the m largest eigenvalues. Form Ai, by using
respective eigenvectors as columns.

o Classify X to the class wi, for which the norm of the
subspace projection is maximum

AT >[A7 | Viz ]

O According to Pythagoras theorem, this corresponds to
the subspace to which ,. is closer.
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“Independent Component Analysis

(:ICA) In contrast to PCA, where the goal was to
produce uncorrelated features, the goal in ICA is to
produce statistically independent features. This is a much
stronger requirement, involving higher to second order
statistics. In this way, one may overcome the problems of
PCA, as exposed before.

= The goal: Given x , compute ye %'

y=Wx
= so that the components of y are statistically independent. In
order the problem to have a solution, the following assumptions
must be valid:

o Assume that X is indeed generated by a linear combination of
independent components

x=0y



@ is known as the mixing matrix and W as the
demixing matrix.

@ must be invertible or of full column rank.

Identifiability condition: All independent
components, y(i), must be non-Gaussian. Thus, in
contrast to PCA that can always be performed, ICA
Is meaningful for non-Gaussian variables.

Under the above assumptions, y(i)'s can be
uniquely estimated, within a scalar factor.






Measures of nongaussianity

O To use nongaussianity in ICA estimation, we must have a

quantitative measure of nongaussianity of a random variable, say y.
To simplify things, let us assume that y is centered (zero-mean) and
has variance equal to one.

Kurtosis

The classical measure of nongaussianity is kurtosis or the
fourth-order cumulant. The kurtosis of y is classically defined by

kurt(y) = E {y }-3(E {y 2}
Negentropy

A second very important measure of nongaussianity is given by
negentropy. Negentropy is based on the information-theoretic
quantity of (differential) entropy.

Negentropy J is defined as follows
J(y) = H (ygauss)-H (y)



Eigenfaces

Let x —ix,,x,,...,x,) P€ @random vector with observations . .
1.Compute the mean .

_1 Y x,

- n i=1 l
2.Compute the the Covariance Matrix S 1 o T

_HZ [xl

i=l1

3.Compute the eigenvalues ;. and eigenvectors v; of g
Svi=Aw,i=1,2,...,n
4.0Order the eigenvectors descending by their eigenvalue. The  principal components
are the eigenvectors corresponding to thek largest @igenvalues.
The k principal components of the observed vector are then given by:
=WT(x—p)

Where w: [v1.’vl.,...3vk]



Eigenface recognition

[l

The Eigenfaces method then performs face
recognition by:

Projecting all training samples into the PCA
subspace.
Projecting the query image into the PCA subspace.

Finding the nearest neighbor between the
projected training images and the projected query
image.



Still there’s one problem left to solve. Imagine we are given 400 images sized
100 = 100 pixel. The Principal Component Analysis solves the covariance matrix
§ — XXT, where size(X) = 10000 x 400 in our example. You would end up with
a 10000 = 10000 matrix, roughly 0.8GB. Solving this problem isn't feasible, s0
we'll need to apply a trick. From vyour linear algebra lessons you know that a
M = N matnx with M = N can only have N — 1 non-zero eigenvalues. So it's
possible to take the eigenvalue decomposition § = XTX of size N % Ninstead:

X" Xv; = Avi

and get the original eigenvectors of § = XXT with a left multiplication of the data
matrix;:

XX (Xv;) = As(Xw;)



Imagem das eigenfaces
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Scree plot

O A plot, in descending order of magnitude, of the
eigenvalues of a correlation matrix. In the context
of factor analysis or principal components analysis
a scree plot helps the analyst visualize the relative
importance of the factors — a sharp drop in the
plot signals that subsequent factors are ignorable.




Scree plot

. http:/fwiki .originlab.con/originlaShouto
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O O O O O 0O 0O

Mals tecnlcas de redugao de
dimensionalidade

MDS (multidimensional scaling)
Nonlinear mappings

Projection pursuit

Grand tours

Kernel PCA

Autoencoder / Sparse coding
Maquinas de Boltzman Restritas



O http://www.analytictech.com/networks/mds.htm
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